Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1184952

ABSTRACT

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Subject(s)
Antiviral Agents/pharmacology , DNA Viruses/drug effects , Nucleosides/pharmacology , Oxazines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/toxicity , Cell Line, Tumor , Chlorocebus aethiops , Dogs , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/toxicity , Oxazines/chemical synthesis , Oxazines/toxicity , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL